Реферат на тему; Золотое сечение

Реферат на тему; Золотое сечение

Реферат на тему; Золотое сечение
0
03 мая 2021

МБОУ СОШ №3 им. К.А.Москаленко

Реферат по математике

Авторы: Межов Илья Сергеевич,

Банных Даниил Дмитриевич

МБОУ СОШ№3 6В класс

Научный руководитель: Чеботарева Марина Викторовна

Понятие о «золотом» сечении……………………………………2-4

«Золотой» прямоугольник……………………………………. 5

«Золотое» сечение в живописи…………………………………..5-7

«Золотое» сечение в архитектуре………………………………..7-11

«Золотое» сечение в природе…………………………………….11-14

«Золотое» сечение в анатомии…………………………………. 14-15

«Золотое» сечение в скульптуре…………………………………15

При подготовке к данному реферату мы изучили много научной литературы не только по математике, но и использовали информацию из других наук: биологии, истории, анатомии. Для начала мы бы хотели привести пример из практики.

Если вы подходите к пустой скамейке и садитесь на неё, то вы сядете не посередине скамейки и, конечно, не на самый край. Если вы незаметно замерите длины, на которые своим телом разделили скамейку, то обнаружите, что отношение большего отрезка к меньшему равно отношению всей длины к большему отрезку. Это число, называется золотым сечением.

1. Понятие «золотого» сечения

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

с: b = b: а или a: b = b: c. Первое отношение приблизительно равно 1.6, а второе- 0.6.

Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян.

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипосикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне.

Золотое отношение обычно обозначают буквой F – прописной буквой греческого алфавита. Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V в. до н.э. Он руководил строительством храма Парфенон в Афинах ; в пропорциях этого храма многократно присутствует число F . Его фасад вписывается в прямоугольник, отношение сторон которого равно F .

2. Пентаграмма

Замечательный пример «золотого» сечения представляет собой правильный пятиугольник — выпуклый и звездчатый. В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются золотыми треугольниками. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана.

Она считалась символом здоровья и служила опознавательным знаком. Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер.

Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки, равные DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Интересно, что стороны пентаграммы, пересекаясь, образуют снова правильный пятиугольник, в котором пересечение диагоналей даёт нам новую пентаграмму и так далее до бесконечности.

Пентаграмма очень красива, недаром её помешают на свои флаги и гербы многие страны. На флагах многих государств изображена правильная пятиконечная звезда.

3. «Золотой» прямоугольник

В эпоху Возрождения «золотое» сечение было очень популярно среди художников, скульпторов, архитекторов. Так, выбирая размеры картины, художники старались, чтобы отношения её сторон равнялось числу Ф (приближенно равным 0,6). Такой прямоугольник стали называть «золотым», он обладает интересным свойством. Если от «золотого» прямоугольника со сторонами а и b ( a > b ) отрезать квадрат со стороной b , то получится опять «золотой» прямоугольник. Этот процесс можно продолжать до бесконечности. Каждый раз мы будем получать прямоугольник меньших размеров, но опять же «золотой».

4. «Золотое» сечение в живописи

«Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Леонардо да Винчи

Леонардо да Винчи в своем творчестве не перестает восхищать зрителя пропорциями золотого сечения. Друг этого знаменитого художника, известный математик, Лука Пачоли называл «золотое» сечение божественной пропорцией. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Образцом того, как использовал «золотой» прямоугольник в своих творениях Леонардо да Винчи, может послужить его знаменитый портрет Моны Лизы, лицо которой прекрасно вписывается в такой прямоугольник.

Также портрет Джоконды долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

Леонардо да Винчи «Мона Лиза» (Джоконда)

«Та́йная ве́черя» — фреска работы Леонардо да Винчи, изображающая сцену последнего ужина Христа со своими учениками. В этой картине присутствуют «золотые» прямоугольники.

На этой знаменитой картине И. И. Шишкина «Сосновая роща» просматриваются мотивы «золотого» сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны — освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен — при желании можно с успехом продолжить деление картины по золотому сечению и дальше.

И. И. Шишкин «Сосновая роща»

«Золотая» пропорция-понятие математическое. Но она является критерием гармонии и красоты, а это уже категория искусства

В древнерусском искусстве существовал канон пропорций, позволявший гармонично “вписывать” произведения живописи в интерьер храма. “Троица” — самая совершенная среди сохранившихся икон Андрея Рублева и самое прекрасное творение древнерусской живописи–была, Написана мастером в первой четверти ХV столетия .

5. «Золотое» сечение в архитектуре

В книгах о «золотом» сечении можно найти замечание о том, что в архитектуре, как и в живописи всё зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое» сечение, то с других точек зрения они будут выглядеть иначе. «Золотое» сечение даёт наиболее спокойное соотношение размеров тех или иных длин.

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон( V в. до н. э.)-храм Афины. Размеры Парфенона хорошо изучены. Известно, что фасад Парфенона вписан в прямоугольник со сторонами 1:2.

Другим примером использования «золотой» пропорции из архитектуры

МБОУ СОШ №3 им. К.А.Москаленко

Реферат по математике

Авторы: Межов Илья Сергеевич,

Банных Даниил Дмитриевич

МБОУ СОШ№3 6В класс

Научный руководитель: Чеботарева Марина Викторовна

Понятие о «золотом» сечении……………………………………2-4

«Золотой» прямоугольник……………………………………. 5

«Золотое» сечение в живописи…………………………………..5-7

«Золотое» сечение в архитектуре………………………………..7-11

«Золотое» сечение в природе…………………………………….11-14

«Золотое» сечение в анатомии…………………………………. 14-15

«Золотое» сечение в скульптуре…………………………………15

При подготовке к данному реферату мы изучили много научной литературы не только по математике, но и использовали информацию из других наук: биологии, истории, анатомии. Для начала мы бы хотели привести пример из практики.

Если вы подходите к пустой скамейке и садитесь на неё, то вы сядете не посередине скамейки и, конечно, не на самый край. Если вы незаметно замерите длины, на которые своим телом разделили скамейку, то обнаружите, что отношение большего отрезка к меньшему равно отношению всей длины к большему отрезку. Это число, называется золотым сечением.

1. Понятие «золотого» сечения

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

с: b = b: а или a: b = b: c. Первое отношение приблизительно равно 1.6, а второе- 0.6.

Принято считать, что понятие о золотом сечении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян.

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипосикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне.

Золотое отношение обычно обозначают буквой F – прописной буквой греческого алфавита. Такое обозначение принято в честь древнегреческого скульптора Фидия, жившего в V в. до н.э. Он руководил строительством храма Парфенон в Афинах ; в пропорциях этого храма многократно присутствует число F . Его фасад вписывается в прямоугольник, отношение сторон которого равно F .

2. Пентаграмма

Замечательный пример «золотого» сечения представляет собой правильный пятиугольник — выпуклый и звездчатый. В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются золотыми треугольниками. Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана.

Она считалась символом здоровья и служила опознавательным знаком. Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер.

Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки, равные DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Интересно, что стороны пентаграммы, пересекаясь, образуют снова правильный пятиугольник, в котором пересечение диагоналей даёт нам новую пентаграмму и так далее до бесконечности.

Пентаграмма очень красива, недаром её помешают на свои флаги и гербы многие страны. На флагах многих государств изображена правильная пятиконечная звезда.

3. «Золотой» прямоугольник

В эпоху Возрождения «золотое» сечение было очень популярно среди художников, скульпторов, архитекторов. Так, выбирая размеры картины, художники старались, чтобы отношения её сторон равнялось числу Ф (приближенно равным 0,6). Такой прямоугольник стали называть «золотым», он обладает интересным свойством. Если от «золотого» прямоугольника со сторонами а и b ( a > b ) отрезать квадрат со стороной b , то получится опять «золотой» прямоугольник. Этот процесс можно продолжать до бесконечности. Каждый раз мы будем получать прямоугольник меньших размеров, но опять же «золотой».

4. «Золотое» сечение в живописи

«Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Леонардо да Винчи

Леонардо да Винчи в своем творчестве не перестает восхищать зрителя пропорциями золотого сечения. Друг этого знаменитого художника, известный математик, Лука Пачоли называл «золотое» сечение божественной пропорцией. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок – бога отца, а весь отрезок – бога духа святого).

Образцом того, как использовал «золотой» прямоугольник в своих творениях Леонардо да Винчи, может послужить его знаменитый портрет Моны Лизы, лицо которой прекрасно вписывается в такой прямоугольник.

Также портрет Джоконды долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

Леонардо да Винчи «Мона Лиза» (Джоконда)

«Та́йная ве́черя» — фреска работы Леонардо да Винчи, изображающая сцену последнего ужина Христа со своими учениками. В этой картине присутствуют «золотые» прямоугольники.

На этой знаменитой картине И. И. Шишкина «Сосновая роща» просматриваются мотивы «золотого» сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны — освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен — при желании можно с успехом продолжить деление картины по золотому сечению и дальше.

И. И. Шишкин «Сосновая роща»

«Золотая» пропорция-понятие математическое. Но она является критерием гармонии и красоты, а это уже категория искусства

В древнерусском искусстве существовал канон пропорций, позволявший гармонично “вписывать” произведения живописи в интерьер храма. “Троица” — самая совершенная среди сохранившихся икон Андрея Рублева и самое прекрасное творение древнерусской живописи–была, Написана мастером в первой четверти ХV столетия .

5. «Золотое» сечение в архитектуре

В книгах о «золотом» сечении можно найти замечание о том, что в архитектуре, как и в живописи всё зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое» сечение, то с других точек зрения они будут выглядеть иначе. «Золотое» сечение даёт наиболее спокойное соотношение размеров тех или иных длин.

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон( V в. до н. э.)-храм Афины. Размеры Парфенона хорошо изучены. Известно, что фасад Парфенона вписан в прямоугольник со сторонами 1:2.

Другим примером использования «золотой» пропорции из архитектуры

древности является Пантеон.

Знаменитый русский архитектор М. Ф. Казаков широко использовал в своем творчестве золотое сечение. Его талант был многогранным, но в большей степени он проявился в многочисленных проектах жилых домов и усадеб. Например, золотое сечение можно встретить в архитектуре здания бывшего сената в Кремле.

Дом Пашкова Здание сената в Кремле

Еще один архитектурный шедевр Москвы — дом Пашкова — является одним из наиболее совершенных произведений архитектора В.Баженова. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году. Многие высказывания зодчего заслуживают внимания. О своем любимом искусстве Баженов говорил: "Архитектура — главнейшие имеет три предмета: красоту, спокойствие и прочность здания. К достижению сего служит руководством знание пропорции, перспективы, механики или вообще физики, а всем им общим вождем является рассудок".

Храм Василия Блаженного

Д олгое время считали, что зодчие Древней Руси строили все «на глазок», без особых математических расчетов. Однако новейшие исследования показали, что русские архитекторы хорошо знали математические пропорции, о чем свидетельствует анализ геометрии древних храмов.

Трудно найти человека, который бы не знал и не видел собора Василия Блаженного на Красной площади. Храм этот особенный; он отличается удивительным разнообразием форм и деталей, красочных покрытий; ему нет равных в нашей стране. Архитектурное убранство всего собора продиктовано определенной логикой и последовательностью развития форм. Исследуя его, пришли к выводу о преобладании в нем «золотого» сечения.

Закон «золотого» сечения определяет пропорциональный строй церкви Покрова на Нерли. Гармония храма Покрова подчинена математически строгим законам пропорциональности. Цепь математических закономерностей и становится волшебной мелодией взаимосвязанных архитектурных форм. Церковь по праву считается жемчужиной русской архитектуры.

Изучая архитектуру церкви Покрова на Нерли, русский архитектор Шевелев пришел к выводу, что в этом шедевре архитектуры проявляется пропорция, которая представляет собой отношение большей стороны к диагонали прямоугольника с отношением сторон 1:2. Таким образом, в основе взаимосвязанных пропорций этого архитектурного сооружения положены пропорции прямоугольника и его производная – золотая пропорция. Наличие этих пропорций и определило красоту храма.

«Великая книга природы написана на языке математики».

Галилео Галилей

6. «Золотое» сечение в природе

Одним из первых проявлений «золотого» сечения в природе подметил немецкий математик и астроном Иоганн Кеплер. С XVII века наблюдения математических закономерностей в ботанике и зоологии стали быстро накапливаться.

«Золотое» сечение встречается в растительном мире. Рассматривая расположение трёх подряд идущих пар листьев на общем стебле растения, можно заметить, что между первой и третьей парой вторая находится в месте « золотого» сечения.

Если внимательно рассмотреть веточку с листьями, то можно заметить, что основание черешков располагаются по винтовой линии, каждый следующий лист прикреплен выше и в сторону от предыдущего, то есть располагаются по спирали.

В биологических исследованиях 70-90 гг. показано, что, начиная с вирусов и растений и кончая организмом человека, всюду выявляется золотая пропорция, характеризующая соразмерность и гармоничность их строения. Золотое сечение признано универсальным законом живых систем.

Хорошо известна «золотая» пропорция пятилепестковых цветков яблони, груши и многих других растений.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Изучая конструкции раковин, ученые обратили внимание на целесообразность форм и поверхностей раковин: внутренняя поверхность гладкая, наружная — рифленая. Внутри покоится тело моллюска — внутренняя поверхность должна быть гладкой. Наружные ребра увеличивают жесткость раковины и, таким образом, повышают ее прочность. Форма раковин поражает своим совершенством и экономичностью средств, затраченных на ее создание. Идея спирали в раковинах выражена не приближенно, а в совершенной геометрической форме, в удивительно красивой, «отточенной» конструкции.

Гете подчеркивал тенденцию природы к спиральности. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя закон золотого сечения.

Комментировать
0
Комментариев нет, будьте первым кто его оставит

;) :| :x :twisted: :sad: :roll: :oops: :o :mrgreen: :idea: :evil: :cry: :cool: :arrow: :P :D :???: :?: :-) :!: 8O

Это интересно
Adblock
detector